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1  |  INTRODUC TION

Climate change is driving declines in the abundance of wild or-
ganisms across the world (Parmesan,  2006; Sage,  2020; Young 
et al., 2016). Along with habitat loss and degradation, studies of 
insects frequently report climate as a primary contributor to re-
ductions in population density (Boggs, 2016; Bowler et al., 2017; 
Harvey et al., 2022; Wagner, Fox, et al., 2021; Wagner, Grames, 

et al., 2021; Wilson & Fox, 2021). However, climate change is not 
one cohesive stressor and is instead a phenomenon composed 
of changes to mean temperature and precipitation, increased 
frequency of extreme events, and their interactions, which are 
all expected to impact individual populations through different 
direct and indirect processes (Boggs & Inouye,  2012; Filazzola 
et  al.,  2021). Additionally, climate shifts are not uniform across 
space or time, with higher latitudes and elevations experiencing 
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Abstract
Climate change is contributing to declines of insects through rising temperatures, 
altered precipitation patterns, and an increasing frequency of extreme events. The 
impacts of both gradual and sudden shifts in weather patterns are realized directly 
on insect physiology and indirectly through impacts on other trophic levels. Here, we 
investigated direct effects of seasonal weather on butterfly occurrences and indirect 
effects mediated by plant productivity using a temporally intensive butterfly monitor-
ing dataset, in combination with high-resolution climate data and a remotely sensed 
indicator of plant primary productivity. Specifically, we used Bayesian hierarchical 
path analysis to quantify relationships between weather and weather-driven plant 
productivity on the occurrence of 94 butterfly species from three localities distrib-
uted across an elevational gradient. We found that snow pack exerted a strong direct 
positive effect on butterfly occurrence and that low snow pack was the primary driver 
of reductions during drought. Additionally, we found that plant primary productiv-
ity had a consistently negative effect on butterfly occurrence. These results high-
light mechanisms of weather-driven declines in insect populations and the nuances 
of climate change effects involving snow melt, which have implications for ecological 
theories linking topographic complexity to ecological resilience in montane systems.
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more rapid rates of change and such changes being nonuniformly 
distributed across seasons (Rangwala & Miller,  2012; Wang 
et al., 2016). This spatial and temporal complexity makes under-
standing trends and forecasting future population trajectories dif-
ficult as such work requires extensive long-term datasets that are 
relatively scarce for insects, especially at higher elevations (Halsch 
et al., 2021). This paucity of information is problematic consider-
ing the importance of insects as ubiquitous, crucial components of 
most natural systems and major components of global biodiversity 
(Wilson, 1987). In this study, we use 36 years of monitoring data 
of 94 species to evaluate direct and indirect effects of weather 
on butterflies and their larval host and nectar plants across three 
sites along an elevational gradient in the Sierra Nevada mountain 
range of California.

The direct effects of long-term climate change have been most 
often observed in phenological responses to temperature, with 
many examples of temperate zone insect populations advancing 
their emergence dates to earlier in the year or extending flight ac-
tivity into later months (Forrest, 2016). As ectotherms, the effects 
of temperature on insects are far more than just phenological, and 
events such as heat waves can have direct developmental conse-
quences (Harvey et al., 2020). Rising temperature, however, is just 
one axis of global climate change, and the disruption of precipi-
tation patterns may be an even greater threat (Wagner, 2020). It 
appears that precipitation regimes, particularly extreme events, 
play a significant role in declining insect populations (Forister 
et  al.,  2018; Salcido et  al.,  2020; Stireman et  al.,  2005). While 
temperature and precipitation are two different facets of climate, 
they often covary and specific combinations may be particularly 
adverse for insects (Dai, 2011; Harvey et al., 2022). For instance, 
hotter and drier regions in the US are hotspots of butterfly de-
cline, while cooler and wetter regions are seeing increases in 
abundances (Crossley et al., 2021).

Further complexity derives from the fact that populations are 
embedded in communities and shifting abiotic conditions are ex-
pected to disrupt interactions between co-occurring organisms 
(Gilman et  al.,  2010). Like direct effects, these indirect effects 
have often been explored through a phenological lens. In these 
cases, climate can have an indirect effect on insect populations 
by causing a seasonal decoupling of insects and plants where 
the emergence of a consumer, for example, is no longer aligned 
with a resource (Forrest,  2016). Much of this work has been 
focused on the start of the growing season, but the end of the 
growing season is also important and potentially as consequential 
(Gallinat et al., 2015; Nielsen et al., 2022; Williams et al., 2012). 
For instance, sites experiencing warmer temperatures at the end 
of the adult activity period in late fall experienced the great-
est declines in butterfly abundance, and one hypothesis for 
this effect was stress on late-season plant resources (Forister 
et al., 2021). Beyond potential mismatches in phenology, climate 
change will also alter key features of plant communities, such as 
species composition, nutritional quality, floral resources, natu-
ral defenses, and volatiles, which can have positive or negative 

indirect outcomes on insects (Wilson & Fox, 2021). For instance, 
drought has been shown to decrease floral resources and vola-
tiles while also decreasing defense against herbivory (Burkle & 
Runyon,  2016; Rouault et  al.,  2006), and changes in C:N ratios 
in leaves have been linked to declines in insect herbivores (Welti 
et al., 2020). Such indirect effects may prove to be as important 
as the direct effects; however, studies linking indirect effects to 
long-term trends are few.

In high-elevation systems, direct and indirect processes are 
both important for understanding the ways in which insects re-
spond to weather (Mani,  1968). In these landscapes, perhaps no 
single variable is as important as snow, in the timing of its arrival, 
the timing of its subsequent melt, and its impact on water avail-
ability throughout the following growing season. Population-level 
data for butterflies have demonstrated the benefit of snow in its 
protection from extreme winter conditions for both the butterflies 
themselves (Roland & Matter, 2016) and their host and nectar plants 
(Boggs & Inouye,  2012). Snow effects can also be long-lasting, as 
an early melt can cause an early onset of summer water stress in 
shallow soils (and the plants that utilize these soils) in the following 
growing season (Blankinship et al., 2014). Of course, while snow is 
important, weather during the growing season will also influence 
butterflies directly and indirectly (Murphy & Boggs,  1997; Singer 
& Thomas, 2002). Summer heat, for instance, may contribute to in-
creased activity and expanded phenology, while also stressing ear-
lier developmental stages and host plants (Forister et al., 2021). In 
all, the outcomes of montane butterfly populations in response to 
weather are likely complex, depending on both timing and intensity 
as well as their own phenology.

Here, we use observations from a temporally intensive but-
terfly monitoring program in North America to quantify the di-
rect effects of weather and the indirect effects of weather on 
plant productivity, which affects adults (through quality of nec-
tar sources) and larvae (through abundance and quality of larval 
food plants) from three sites above 1350 m in the Sierra Nevada 
(Forister et  al.,  2010). This dataset contains variation in life his-
tories and landscapes and is ideal for considering the direct and 
indirect effects of weather and the traits associated with varia-
tion in responses to abiotic conditions. We combine these long-
term monitoring records with a satellite-derived indicator of plant 
primary productivity and high-resolution weather data in a mod-
eling framework that incorporates population- and site-specific  
responses. We first ask how conditions during the winter and 
the subsequent growing season impact butterflies directly and 
indirectly, potentially influencing juvenile stages through effects 
on host plants or impacting adults through changes in nectar 
resources. We then consider how these effects relate to how 
populations responded to an extreme, millennium-scale drought 
(Forister et  al.,  2018) and the life history traits that mediated 
drought response. In doing so, we shed new light on how differ-
ent aspects of climate change covary, the relative importance of 
different variables, and the pathways through which they impact 
montane butterflies.
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2  |  METHODS

2.1  |  Overview

Analyses incorporated annually resolved butterfly data, remotely 
sensed NDVI (Normalized Difference Vegetation Index) data, and 
weather data from a downscaled regional climate model into a 
Bayesian hierarchical path analysis to understand direct and indirect 
effects of weather on butterfly occurrence at three monitoring sites 
(Figure 1). To do this, we first performed a factor analysis to reduce 
the dimensionality of the weather data, while still preserving mean-
ingful information with interpretable factors. We then used these 
weather factors and NDVI data to build two separate Bayesian hi-
erarchical models, one predicting NDVI and another predicting but-
terfly occurrence (including NDVI as a predictor; Figure  2). These 
models were interpreted together to build the path analysis. Finally, 
using daily weather data available at one of the sites, we ran an ad-
ditional Bayesian hierarchical model describing the effect of warm 
conditions at the end of winter, an effect of interest based on results 
from the path analysis.

2.2  |  Butterfly data

The butterfly data used in this study are part of a long-term moni-
toring program that includes observations from 10 sites visited 
approximately every other week during the adult butterfly season 
(Forister et al., 2010). These sites cover an elevational gradient in 

northern California that spans sea level to 2800 m. During each 
site visit, observers walked a fixed transect and recorded the pres-
ence of all butterfly species seen. For this analysis, a population 
refers to a time series of a species at a site and is not meant to 
imply genetic structure among sites. We restricted analyses to 
the subset of species that have been present in at least 10 sepa-
rate years at a site and that have never been absent more than 5 
consecutive years, for a total of 188 populations (Figure  S1 for 
the fauna at each site). These criteria eliminated stray species and 
those that colonized in the middle of the study. Additionally, since 
NDVI data were only available beginning in 1984, we further re-
stricted the butterfly data to the years of 1985–2020 (to include 
a lagged effect of 1984). We then totaled the number of times 
each butterfly species was seen each year (for each site) and the 
number of times that a site was visited, which jointly inform the 
binomial sampling distribution. Intraspecific, annual variation in 
the probability of occurrence derived from this approach is an 
established proxy for variation in population density, as greater 
abundance in a year for any particular species is reflected in 
positive observations on more days throughout the year (Casner 
et al., 2014). This proxy relationship has been previously investi-
gated with our dataset, where it was found that change through 
time estimated with individual counts (abundance) and with the 
number of days present are highly related across the majority of 
species (Casner et al., 2014). Those analyses were made possible 
because abundance data are collected (in addition to presence and 
absence data) at the lower elevation sites of our monitoring pro-
gram, where the butterfly fauna is less diverse and thus counts 

F I G U R E  1 Topography of the three 
butterfly monitoring sites where the route 
walked is shown in red. (a) Location of 
monitoring sites in the Northern California 
Sierra Nevada mountains. (b) The Castle 
Peak monitoring site which climbs to 
a summit, follows the ridge, and then 
descends through two meadows. (c) The 
Donner Pass site which largely lies at the 
bottom of a basin. (d) The Lang Crossing 
site which is also largely at the bottom of a 
drainage basin and crosses two rivers.
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of individuals are more readily recorded. Here, we have revisited 
this issue with more years of data relative to the previous analysis 
(Casner et  al.,  2014), and we again find a clear and positive re-
lationship between the binomial probability previously described 
and actual abundance (Figure 3).

2.3  |  Site descriptions

The three high-elevation sites examined here are Castle Peak, 
Donner Pass, and Lang Crossing, located in the Sierra Nevada moun-
tain range of California (Figure 1). We selected these sites because 
they receive substantial percentages of their precipitation as snow, 
and they remain covered during the winter. We were particularly in-
terested in exploring how the duration of snow pack might relate 
to the impact of a mega-drought on butterfly populations (Forister 
et  al., 2018). These sites have also remained relatively unchanged 
compared with the high rates of suburban and exurban develop-
ment that characterize the lower elevation monitoring sites (Forister 
et al., 2010). Thus, the primary stressors of butterflies at the three 
focal montane sites are likely from weather and not from other 
anthropogenic inputs. Finally, given the known heterogeneity of 
weather effects across these monitoring sites (Nice et al., 2019), a 
focus on only a few sites allowed us to more efficiently address the 
complexity of weather responses among butterflies.

The Castle Peak transect (39.367°N, 120.352°W) is 14.5 km long 
and spans an elevation range of 2200–2800 m. The route is mostly 

composed of mixed conifer forest with herbaceous understory but 
also follows a ridge (above treeline) and crosses two meadows. The 
landscape is heterogeneous, and snow melt timing is highly variable 
within a single season, with south-facing sections that melt early 
and north-facing sections that melt late. The Donner Pass transect 
(39.367°N, 120.352°W) is 17.75 km long and spans an elevation 
range of 2000–2175 m. The route is mostly composed of mixed co-
nifer forest with an herbaceous understory but also includes a large 
meadow and granite rock outcroppings. Most of the route is walked 
in the bottom of the local drainage and the route itself is mostly flat. 
The Lang Crossing transect (39.309°N, 120.666°W) is 7.25 km long 
and spans an elevation range of 1350–1475 m. The route consists 
of a relatively even distribution of mixed conifer forest, meadows, 
and xeric rock outcroppings. The route is largely in the bottom of 
a drainage and crosses both the Bear and Yuba rivers. This route 
encompasses more topographic complexity than Donner Pass but 
less than Castle Peak.

2.4  |  NDVI data

NDVI is a commonly used spectral index that contrasts the re-
flectance of red light (which is typically absorbed by healthy 
vegetation) and near-infrared light (which is typically reflected 
by healthy vegetation). Thus, NDVI is a holistic indicator of plant 
community photosynthesis and productivity. We calculated an-
nual NDVI values from Landsat Collection 2 Surface Reflectance 

F I G U R E  2 Conceptual diagram of 
the primary analysis. (a) A factor analysis 
was used to estimate weather covariates 
where observed weather variables are 
shown in the rectangles and the weather 
factors are shown in the ovals underneath 
them. The relationships between the 
original variables and the factors can 
be found in Table S1. The factors are 
ordered by water year (prior October to 
current September, shown as months on 
the bottom). Below the factors are the 
life stages that a typical early and late 
phenology butterfly will be in during time 
periods relevant to these factors. (b) The 
general structure of the path analysis 
where butterflies are affected by weather 
in the same year and from the previous 
year. We also generate indirect effects of 
weather mediated by productivity (NDVI) 
in the same and previous year. Each path 
is estimated at three levels: a population 
within a site (n = 188), a site (n = 3), and 
across all sites (n = 1).
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imagery collected at each of our monitoring sites. To limit the ef-
fects of image irregularities in individual Landsat scenes, we used 
an annual image composite approach as follows. First, we used 
the CFMask-derived quality assurance band (Foga et al., 2017) to 
mask pixels with clouds, shadows, water, and snow cover in each 
Landsat scene that overlapped our study area. For each 30-m pixel 
and year, we then calculated the 75th percentile NDVI value for all 
unmasked values in images collected during the typical growing 
season (i.e., June 1 to September 30), which reflects the overall 
photosynthetic production within a pixel without being sensitive 
to outliers. As a result, we developed annual image composites of 
growing season NDVI for each year in our study period. Within 
each site, we extracted NDVI data from each year in unforested 
areas that are representative of annual phenological patterns for 
herbaceous plants. A single weighted mean NDVI value was then 

calculated for each year at each site, where a pixel that was com-
pletely in an unforested area contributed more than a pixel that 
was on the edge, with partial forest cover. NDVI values were then 
centered and scaled (z-transformed) prior to analysis.

2.5  |  Weather data

Mean monthly values of daytime highs (°C), nighttime lows (°C), 
and precipitation (mm) were derived from the M3 version of the 
Parameter-elevation Regressions on Independent Slopes Model 
dataset (Daly et al., 2008), which provides gridded weather data 
at 4-km native resolution. These data were spatially downscaled 
to 270-m resolution (Flint & Flint,  2012) and were then used as 
inputs for the Basin Characterization Model (BCM), a mechanistic 

F I G U R E  3 Strong positive relationship between the probability of occurrence and annual counts at five lower elevation sites (where 
counts can be conducted). The center panel show this relationship for 201 populations after z-transforming baseline occurrence probability 
and abundance. Fourteen populations were randomly selected to demonstrate this relationship using the raw data. These are shown in the 
14 smaller panels that surround the main figure. Points in all panels are colored by population (white points denote a population that is not 
shown in the marginal panels).
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model that balances the water budget on a per-grid cell basis by 
combining the weather variables with site characteristics, includ-
ing soil depth, porosity, and bedrock type (Flint et al., 2013; Thorne 
et  al.,  2015). The BCM produces additional variables, including 
runoff, recharge, climatic water deficit, the accumulation and melt 
of the snow, and the snow water equivalent (SWE). Because the 
model is mechanistic, it can be calibrated using various ecosys-
tem characteristics. The California version of the BCM has been 
calibrated and validated for actual evapotranspiration using re-
mote sensing (Reitz et  al.,  2017), snow water equivalent (SWE) 
using National Resources Conservation Service (NRCS) Snowpack 
Telemetry (SNOTEL) stations, and streamflow gauges from the 
USGS National Water Information System (Flint et al., 2021). We 
used the path of each transect, buffered by 100 m on either side, 
to sample the 270 m BCM variables and calculated monthly means 
for Tmin, Tmax, PPT, and PCK (SWE) for each month from 1984 to 
2020.

To further explore the role of warm winters in driving butter-
fly populations, we obtained an additional weather dataset from 
the Central Sierra Snow Laboratory in Soda Springs, CA, which 
has maintained a weather station along the Donner Pass monitor-
ing route for the entirety of the monitoring program (Osterhuber & 
Schwartz, 2021). We used this weather station's daily measurements 
of maximum temperature, minimum temperature, snow depth, and 
SWE. To match the temporal window of our factor analysis (dis-
cussed below), we summarized both maximum and minimum tem-
perature by taking the mean across the months of January–March. 
To examine the effects of snow at the end of the cold season, we 
took the average of SWE (which was >0.95 correlated with snow 
depth) across the 2 weeks preceding April 1, to account for occa-
sional instances of missing data over that time span. Each of these 
variables was scaled prior to analysis.

2.6  |  Factor analysis

We treated weather as a latent variable by performing a factor anal-
ysis on the weather data from the BCM model, with the scores of the 
factors becoming the covariates used in the path analysis. To do this, 
we first took seasonal averages of minimum temperature, maximum 
temperature, precipitation, and SWE, calculated within the water 
year (i.e., prior October to current September). We then performed 
a single factor analysis of scaled weather variables across all sites 
(specifying four factors) using the “oblimin” rotation, which does not 
force axes to be orthogonal (preserving any correlations that may 
exist between seasonal weather). By performing one factor analysis 
across all the weather data, we ensured that the interpretation of 
factors was consistent across all sites and years. The specification 
of four factors was chosen based on the results of an exploratory 
factor analysis where we tried different rotations and numbers of 
factors to assess fits and interpretations. We then generated factor 
scores for each site in each year to be used as covariates in sub-
sequent analyses. Finally, factor scores were scaled for use in the 

subsequent path models. The factor analysis was performed using 
the psych package (version 2.2.9) in R (Revelle, 2022).

2.7  |  Modeling of butterfly populations

The butterfly occurrence and NDVI models were fit as two sepa-
rate Bayesian hierarchical models, the outputs of which were 
combined to describe direct and indirect effects. This approach 
is similar to Piecewise SEM (Lefcheck,  2016), where models are 
fit separately, but inferences are made using all models. Butterfly 
occurrences were modeled using covariates for each seasonal 
weather factor, each seasonal weather factor in the previous year, 
NDVI, the previous year's NDVI, butterfly density in the previ-
ous year, and year (see Figure  2 for schematic of these effects, 
Figure S2). Butterfly occurrences were treated as binomially dis-
tributed where an observation of a species during an individual 
survey was treated as a “success” and the total number of surveys 
during a year at that site was the number of “trials.” The probabil-
ity of a success was modeled using a logit link and was predicted 
by the linear terms in the model. In our hierarchical framework, 
the coefficients associated with each covariate were estimated at 
three levels: an individual population within a site (188 estimates 
per covariate), across all populations within that site (3 estimates 
per covariate), and across all populations across all sites (1 esti-
mate per covariate). For a small subset of species that only occur 
early in the year, we removed the effect of the end-of-the-year 
conditions because this occurs after the adults have completed 
their flight. NDVI was modeled using covariates for each seasonal 
weather factor, each seasonal weather factor in the previous year, 
the previous year's NDVI, and year (Figure 2, Figure S3). The coef-
ficients for each covariate were estimated at two levels: within 
each site and across all sites. NDVI was treated as normally dis-
tributed with a mean that is predicted by the linear terms in the 
model and a precision estimated from the data. Vaguely informa-
tive priors were used for all terms in both models and these prior 
specifications, along with full model statements, can be found in 
the supplement (Figures S2 and S3). Both models were run using 
the jagsUI package (version 1.5.2) in R, which implements Gibbs 
and Metropolis–Hastings sampling algorithms (Kellner,  2019). 
Model convergence was evaluated by examining Gelman–Rubin 
diagnostics and traceplots. Model fit was evaluated using Pareto 
smoothed importance sampling and posterior predictive checks 
using the loo (version 2.5.1) and bayesplot (version 1.10.0) pack-
ages in R (version 4.4.2; Gabry & Mahr, 2022; R Core Team, 2022; 
Vehtari et al., 2022).

Once the butterfly and NDVI models were fit, outputs were 
combined for interpretation. The direct effect of each weather 
factor on butterflies was inferred from the posterior distribution 
of each coefficient associated with each weather factor in the 
butterfly model. The indirect effect of each weather factor was 
calculated by multiplying points describing the posterior distribu-
tion associated with each weather factor in the NDVI model by 
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points describing the posterior distribution of the NDVI effect in 
the butterfly model. To standardize the coefficients from the but-
terfly model, which are on a logit scale, we performed a Menard 
standardization (Menard, 2017). The total effect of each weather 
variable (whether direct or indirect) was calculated by summing all 
relevant paths.

In response to the effect of warm winters observed with the path 
analysis, we ran an additional analysis to understand which traits 
were most strongly associated with this response at the Donner 
Pass site (where the most local snow data were available). To do this, 
we used a Random Forest model; Breiman, 2001) to detect the life 
history variables that are predictive of how a population responds 
to a warm winter. In the model, we used larval host breadth, over-
wintering stage, phenology, wingspan, and range size as predictor 
variables, with the response variable being the population-specific 
response to the end-of-winter conditions (i.e., coefficients from the 
previous path model). This was done with 500 trees with a node 
size of five using the randomForest package (Breiman et al., 2018). 
Because they were important features in this Random Forest anal-
ysis, we then focused on overwintering conditions and overwinter-
ing stages, using a Bayesian hierarchical model and data from the 
Donner Pass site (Figure S4). For this model, butterfly occurrences 
were once again binomially distributed (as previously described) 
and predictors included mean winter maximum temperature, mean 
winter minimum temperature, SWE, NDVI, year, a multiplicative in-
teraction term between snow and the maximum temperature, and 
a multiplicative interactive term between snow and minimum tem-
perature. The effect of each predictor on butterflies was estimated 
at two levels: for each species and for each overwintering stage. 
We used vaguely informative priors, and a full model statement can 
be found in the supplement (Figure S4). Full implementation of the 
model, including sampling, convergence evaluation, and model fit 
were performed in the same way as the path analysis.

3  |  RESULTS

3.1  |  Weather factor analysis

We generated four factors that incorporated information from the 
original 14 temperature and precipitation variables to summarize 
seasonal covariation in weather (Figure 2a). Two of the factors repre-
sented weather during the winter, while the other two represented 
weather during the growing season (Table S1). The first winter fac-
tor largely described early winter conditions, while the other winter 
factor described the conclusion of winter, particularly temperature 
at winter's end (Table S1). High values of the early winter factor indi-
cated a cool and wetter onset of winter (including more snow), while 
high values of the late winter factor indicated a hotter January–
March (Table S1). The growing season factors largely split between 
the first and second half of the adult butterfly season (April–June 
and July–September, respectively). Higher values for both growing 
season factors indicated a hotter and drier season (Table S1). Factors 

were generated with nonorthogonal rotation and are thus corre-
lated, but weakly (Figure S5).

3.2  |  Total and indirect effects of weather factors

When looking at the total impact of the four weather factors, sum-
ming across direct, indirect, and lagged (previous year) pathways, 
we found heterogeneous effects on butterfly occurrence. Most 
of the posterior distributions for both the across-site and the site-
level effects were largely overlapping zero, indicating uncertainty in 
quantifying common responses to weather shared across species at 
different monitoring sites or even shared across species within a site 
(Figure 4a, Figure S6). This is despite the weather variables them-
selves being highly correlated across sites (Figure S7). We did find 
effects of each of these factors (at an 80% credibility level, equal 
tail probability interval [ETPI]) at the population level, as shown in 
Figure 4a and listed in Table 1. Hot and dry conditions in the first 
half of the growing season have largely negative effects, resulting 
in reductions in occurrence probability from .13 to .48 per SD of 
hot spring conditions. We found a reversal of equal magnitude of 
this effect for many species later in the growing season (Figure 4a, 
Table 1). We detected both positive and negative responses to win-
ter variables, but a wetter and cooler onset of winter (starting at the 
end of the previous calendar year) generally increases the probabil-
ity of occurrence for butterflies in the next year (Figure 4a, Table 1). 
The end-of-winter conditions affected the most populations, but did 
so bidirectionally, with populations responding both positively and 
negatively (Figure 4a, Table 1). When considering indirect effects, 
we see reversals in the directions of effects as compared to direct 
effects because NDVI (i.e., higher vegetation productivity) has a 
negative effect on butterflies, as shown in Figure 4b and Table 1. We 
found variation in effect sizes by site, but conditions in early winter 
appear to have the strongest and most general indirect effect, where 
a high snow year (1 SD above normal) reduces butterfly occurrences 
indirectly by up to .24. This effect is negative due to it being a posi-
tive predictor of NDVI (which itself has a negative association with 
butterfly populations). We also want to note the negative indirect 
effect of year: After accounting for seasonal weather variation, 
there is a residual negative trend over time explained by an indirect 
relationship with NDVI (Figure 4b, Table 1).

3.3  |  Comparing prior and current year weather  
on butterfly occurrence

The total effects described above are derived from the path coef-
ficients from two different models (including both within-year and 
lagged effects), whose coefficients can be considered individually. 
As was the case for total effects, it is the population-specific path 
coefficients that were more informative; however, we did observe 
shared variation in responses based upon the site (Figure  S8). 
Within the same year, we saw largely positive responses to wetter 
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8 of 15  |     HALSCH et al.

early winters and largely negative responses to hot/dry ends to 
the growing season (at an 80% credibility level, ETPI; Figure 4c, 
Table  1). We also found strong negative effects of NDVI in the 
same year, which reduces the probability of occurrences of but-
terflies between .08 and .26 per SD (Figure  4c, Table  1). When 
looking at the impacts of weather in the previous year, we again 

found not only largely positive responses to wet early winters but 
also largely negative responses to hot/dry early growing season 
conditions and positive responses to hot/dry late growing seasons 
(Figure  4d, Table  1). We also found, for most species, a positive 
effect of butterfly occurrence probability in the previous year af-
fecting observations in the current year. All the parameters in both 

F I G U R E  4 Effects of seasonal weather on butterfly populations. For each plot, small colored points show estimates from the lowest 
level in the hierarchy (a population within a site) and are colored by site (across-site estimates can be found in Figure S6). Points denoting 
estimates that are credibly different from 0 at a 0.8 level are opaque. Larger colored points with error bars show the site-level estimate 
with 80% credible intervals. (a) The total effect size (direct + indirect) of each weather covariate. (b) The strength of indirect effects of 
each weather covariate. (c) The estimated effects of each covariate from the same year butterflies were observed (for instance, butterflies 
observed in 1980 respond positively to snow accumulation in the 1979–1980 winter). (d) The estimated effects of each covariate from the 
year before butterflies were observed (for instance, butterflies observed in 1980 respond positively to hot and dry conditions at the end of 
the 1979 growing season).
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    |  9 of 15HALSCH et al.

path analysis models converged and the models were a good fit 
to the data (Tables S2 and S3, Figures S9 and S10). All parameter 
estimates and convergence diagnostics can be found in the sup-
plemental materials.

3.4  |  Population response to drought

In addition to the impacts of weather, estimated through the mod-
els described above, we were also interested in how sensitivity to 
specific seasonal weather variables could inform our understanding 
of population responses to a major climatic event. We found that 
population response to elevated winter temperatures is related to 
population trajectories during the mega-drought years of 2011–
2015 (Figure  5). Populations with an overall positive response to 
warm end-of-winter conditions maintained higher occupancy dur-
ing the drought years, which is also related to phenology and over-
wintering stage (we examined other traits which were found to be 
less predictive, see Figure  S11). Given this result, we next asked 

how overwintering stage is associated with population response 
to a warm winter and thus response to the drought. We hypoth-
esized that if the mechanism underlying the relationship to warm 
winters involves an effect of premature snow melt and a disruption 
to diapause, then species that overwinter in younger developmental 
stages will be more vulnerable. Another possibility is that early snow 
melt reduces water availability at the end of the following growing 
season, which disproportionately impacts adult butterflies foraging 
for floral resources that have dried up. In this scenario, an effect of 
NDVI should be more important, particularly for species that fly late 
in the season.

We found a positive effect (at an 80% credibility level, ETPI) of 
higher April 1 SWE on all butterflies, across all overwintering stages 
(.99 probability of direction [pd]; Figure 6a). For other weather vari-
ables, we found that the most credible effects were specific to cer-
tain overwintering stages (Figure  6a). For example, we observed a 
negative effect of elevated minimum temperatures during late winter 
on populations that overwinter as eggs, larvae, and pupae (.99 pd,  .97 
pd, and .91 pd, respectively). We also recover the previously detected 

Effect type Predictor variable
Range of positive 
effect sizes

Range of negative 
effect sizes

Total Early winter 0.17–.46 (26) 0.17–.63 (8)

Total Late winter 0.17–.55 (40) 0.13–.54 (34)

Total Early growing season 0.21–.46 (9) 0.13–.48 (49)

Total Late growing season 0.11–.53 (46) 0.18–.40 (6)

Total Year 0.16–.47 (26) 0.12–.56 (90)

Indirect Early winter 0.05 (1) 0.04–.24 (110)

Indirect Late winter 0.05–.16 (62) 0.02–.06 (3)

Indirect Early growing season 0.03–.19 (83) 0.04–.10 (3)

Indirect Late growing season 0.02–.11 (76) 0.03–.12 (36)

Indirect Year — (0) 0.05–.37 (96)

Same year Early winter 0.07–.17 (55) 0.08–.28 (5)

Same year Late winter 0.07–.17 (17) 0.07–.19 (56)

Same year Early growing season 0.08–.18 (15) 0.08–.31 (42)

Same year Late growing season 0.08–.12 (3) 0.07–.31 (44)

Same year NDVI — (0) 0.08–.26 (93)

Same year Year 0.09–.38 (47) 0.09–.39 (68)

Prev. year Early winter 0.06–.30 (63) 0.07–.24 (2)

Prev. year Late winter 0.07–.33 (25) 0.07–.14 (11)

Prev. year Early growing season 0.07–.17 (10) 0.07–.24 (66)

Prev. year Late growing season 0.06–.22 (83) 0.09–.11 (2)

Prev. year NDVI 0.08–.18 (2) 0.09–.31 (62)

Prev. year Butterflies 0.09–.43 (145) 0.09–.21 (3)

Note: The number of populations that respond at that level to each predictor variable is indicated 
with parentheses (out of 188 populations). Effect sizes are the expected change in the probability 
of occurrence for every 1 SD of change in a predictor variable. Linear relationships for effect sizes 
from the binomial model were estimated using a Menard standardization (Menard, 2017). “Total” 
refers to the effects of predictor variables across both same- and previous-year effects. “Indirect” 
refers to the effects of predictor variables mediated through productivity (NDVI). “Butterflies” 
(in the predictor variable column) refers to the influence of butterfly density in the previous year 
(represented by the number of days observed) on observations in the subsequent year.

TA B L E  1 Range of mean positive and 
negative effect sizes of credible effects at 
a 0.8 level (the 80% equal tail probability 
interval does not overlap 0).
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10 of 15  |     HALSCH et al.

negative effect of NDVI on butterflies, particularly on stages that 
overwinter as eggs and larvae (.94 pd and .88 pd), that will fly as 
adults later in the season relative to populations that overwinter as 
pupae (Figure 6a). Finally, we found support for an interactive effect 
between April 1 SWE and minimum temperature for populations that 
overwinter as eggs and larvae (.95 pd and  .99 pd; Figure 6a). The in-
teractive combination of both minimum and maximum temperature 
and April 1 snow (i.e., SWE) is visualized in Figure 6b,c, where years 
with reduced snow and high minimum temperature greatly reduce the 

probability of occurrence in the following growing season (Figure 6b), 
while reduced snow and maximum temperature do not strongly inter-
act (Figure 6c). This is especially informative for the drought, shown 
with the red point, where the interactive combination of high min-
imum temperature and low snow reduced the probability of occur-
rence of juvenile stage overwinter butterflies by over 15% compared 
with average conditions (Figure 6c). All the parameters in the Donner 
Pass model converged and the models were a good fit to the data 
(Table S4, Figure S12).

F I G U R E  5 Positive relationship 
between how a species responds to 
a warmer winter and how a species 
responded to the 2011–2015 drought at 
(a, b) Castle Peak, (c, d) Donner Pass, and 
(e, f) Lang Crossing. Positive values for 
drought effect indicate that a species did 
better than its historic average during the 
years 2011–2015. In panels (a), (c), and (e), 
points are colored by the average date of 
when that species has ended its flight at 
that site. In panels (b), (d), and (f), points 
are colored by their overwintering stage.
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    |  11 of 15HALSCH et al.

4  |  DISCUSSION

Butterflies and moths in all landscapes across the world are fac-
ing the manifold threats of climate change (Bowler et  al.,  2017; 
Harvey et al., 2022; Wagner, Fox, et al., 2021; Wagner, Grames, 
et al., 2021). Long-term monitoring datasets offer excellent oppor-
tunities to better understand the mechanisms underlying popula-
tion response to shifting and extreme abiotic conditions (Halsch 
et al., 2021). Here, we found that montane butterfly populations, 
even those in close geographic proximity to each other, respond 
in heterogeneous ways to weather (Figure  4). Complex, among-
site variation in abiotic effects that are not a simple function of 
elevation has been observed previously in this system, although 

using analyses that did not include measures of snow or primary 
productivity (Nice et al., 2019). In contrast to those heterogeneous 
effects, we found a strong negative effect of plant primary pro-
ductivity at all sites and found that many populations respond to 
winter temperatures (in both the positive and negative direction). 
The importance of cold season temperatures is consistent with 
a recent regional analysis of butterflies (Forister et al., 2021), al-
though that study was not designed to disentangle species-specific  
responses to abiotic conditions. We found that how a population 
responds to a warm winter predicts how that population fared 
during a mega-drought, where it appears to be related to the melt-
ing of snow, highlighting the importance of the end of winter for 
montane butterflies (Figures 5 and 6).

F I G U R E  6 Coefficient estimates from the model focusing on Donner Pass. (a) The estimated effect (and 80% credible intervals) of 
each variable on butterflies. Small colored points show estimates from the lowest level in the hierarchy (a species) and are colored by 
overwintering stage. Points denoting estimates that are credibly different from 0 at a 0.8 level are opaque. Larger colored points with error 
bars show the wintering stage-level estimate with 80% credible intervals. (b) Visualization of the interaction between minimum temperature 
and April 1 snow for eggs and larvae. (c) Visualization of the interaction between maximum temperature and April 1 snow for eggs and 
larvae. The red point in panels b and c indicates observed conditions during the drought.
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12 of 15  |     HALSCH et al.

A primary motivation behind this work was to explore the role 
of plant-mediated effects in the decline of butterflies in natural 
areas. We focused on productivity (as indicated by NDVI), because 
those data have been collected for a similar length of time to our 
own butterfly data. This index is imperfect and does not include 
aspects of plant communities such as shifts in plant composition 
or functional groups (Pettorelli et al., 2005). Nonetheless, a strong 
negative effect of NDVI was detected with relative consistency 
across sites and species (Figure 4). This result is noteworthy given 
the observed heterogeneity in the responses of individual popu-
lations within and among sites to weather conditions. A negative 
effect of NDVI on animal populations is not without precedent. 
One of the most important potential effects of climate change on 
plant–herbivore interactions is that increasing atmospheric carbon 
dioxide concentrations and temperature will increase C:N ratios 
in plant tissues, decreasing nutritional quality of leaves (Robinson 
et al., 2012). Such changing ratios have been demonstrated to be 
negative for other insect herbivores and are thus a plausible expla-
nation for this result in our data (Welti et al., 2020). Likewise, in-
terannual changes in NDVI may also relate to fluctuations in plant 
community composition, which, in turn, can affect nutritional re-
sources. In montane meadows of the Sierra Nevada, high NDVI 
is often associated with greater cover of hydrophilic species such 
as sedges (Carex spp.), which can form dense mats that exclude 
other plant species such as grasses and forbs (Davis et al., 2020). 
Interestingly, while NDVI is itself a negative predictor of butter-
fly population dynamics, it does not have a straightforward rela-
tionship to butterflies during the drought years. In fact, primary 
productivity decreased during the mega-drought so, if anything, 
butterflies performed even worse during the drought than would 
be expected given the positive influence of reduced productivity 
during that period. Given this, it seems likely that multiple pro-
cesses are at work, and while primary productivity changes may be 
associated with gradual change, sudden and extreme population 
disruption is related to other factors or interacts with productivity 
in ways we do not yet understand.

The effect that was most associated with drought response was 
how a population responds to warm conditions at the end of winter. 
We found that elevated temperatures in the months of January to 
March were broadly associated with changes in the probability of 
occurrence (both positive and negative) and species that responded 
the most negatively to those conditions over the long run of decades 
were also those species that fared the worst during the drought 
years (Figure 5). This pattern was found at all three sites; however, 
it was strongest at the two lower elevation sites: Lang Crossing and 
Donner Pass. Castle Peak, while very close to Donner (<3 km), is a 
much more heterogeneous landscape, and such topographic varia-
tion may buffer populations against warm winters. Our model fo-
cusing on Donner Pass suggests that this warm winter effect is most 
likely due to damaging effects taking place in the winter itself and 
not a delayed effect realized later in the growing season, although 
whether this winter stress is on butterflies (especially on juvenile 
stages), host plants, or both, we cannot determine (Figure 5). The 

importance of minimum temperature (and not maximum tempera-
ture) is particularly insightful as this variable has been linked to di-
rect physiological stress in both butterflies and host plants (Speights 
et al., 2017). This interpretation is also consistent with other studies 
that have associated changes in the beginning and end of winter with 
disruptions of insect populations (Roland & Matter, 2016), particu-
larly in areas where snow cover patterns are shifting from being cov-
ered in winter to being exposed (Roberts et al., 2021). Regardless of 
the mechanism, disruptions to conditions at the end of winter pose 
a serious risk to overwintering butterflies, particularly those in more 
uniform landscapes and in early developmental stages.

Climate change encompasses multiple concomitant weather 
phenomena that vary in space and time. For organisms that have 
distinct, seasonal life stages, interannual variation in the intensity 
of climate change is clearly important for understanding which spe-
cies are most vulnerable (Uhl et al., 2022). Our findings suggest that 
changing or novel conditions at the end of winter are impactful for 
montane butterflies, especially those that overwinter in more vul-
nerable stages such as eggs or early instar caterpillars. However, 
our results also show that this effect is not universal and that het-
erogeneous landscapes that contain variation in topography and 
canopy cover may provide microrefugia capable of buffering some 
populations from extreme events in a way that is consistent with 
long-standing ecological theories of resilience in the face of dis-
turbance (McLaughlin et al., 2017), but it is interesting to note how 
localized and species-specific that effect may be. We also acknowl-
edge that our primary response variable, the binomial probability of 
occurrence, is derived from repeated presence and absence obser-
vations throughout the flight season, and not from counts of indi-
viduals. While the probability of observation is a useful proxy for 
abundance (Casner et al., 2014), it is also intertwined with pheno-
logical variation (Forister et al., 2011), and we expect future stud-
ies focusing on that interdependency will be productive (Figure 3). 
Finally, we note that while many of the variables we examined, such 
as plant primary productivity and the hotness and dryness of fall, 
are gradually increasing over time (Figure  S13), it was an extreme 
weather event that was the single largest disruptor of populations 
(Forister et al., 2018). This further demonstrates the importance of 
extreme weather events, and interactions between temperature 
and precipitation, in understanding how climate change is impacting 
populations in natural areas.
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