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A winner in the Anthropocene: changing host plant
distribution explains geographical range expansion
in the gulf fritillary butterfly
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Abstract. 1. The changing climate is altering species distributions with consequences
for population dynamics, resulting in winners and losers in the Anthropocene.

2. Agraulis vanillae, the gulf fritillary butterfly, has expanded its range in the
past 100 years in the western U.S.A. Time series analysis is combined with species
distribution modelling to investigate factors limiting the distribution of A. vanillae and
to predict future shifts under warming scenarios.

3. Time series analyses from the western U.S.A. show that urban development has a
positive association with year of colonisation (the host plant Passiflora is an ornamental
in gardens). Colonisation was also associated positively and to a lesser extent with
winter maximum temperatures, whereas a negative impact of minimum temperatures
and precipitation was apparent on population growth rates after establishment.

4. Species distribution models vary by region. In the eastern U.S.A., the butterfly is
primarily limited by minimum temperatures in the winter and host availability later in the
season. Eastern U.S. projected expansion broadly follows the expectation of poleward
distributional shifts, especially for the butterfly’s maximum annual extent. Western U.S.
distributions are limited by the host plant, which in turn is dependent on urban centres.
Projected western U.S. expansion is not limited to a single direction and is driven by
urban centres becoming more suitable for the host plant.

5. These results demonstrate the value of combining time series with spatial modelling,
at the same time as incorporating biotic interactions, aiming to understand and predict
shifting geographical ranges in the Anthropocene.
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Introduction

The influences of global change, which include invasive
species, overexploitation and climate change, are impacting
species around the world (Butchart et al., 2010). We can expect
these factors to have varying effects on different species, and
that some species will be ‘winners’ under altered conditions
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(McKinney & Lockwood, 1999). Identifying successful species
and the reason for their success in the face of environmental
change is important for understanding the potential of individual
species and ecosystems to persist and thrive in future climates.
In particular, understanding how different aspects of global
change can negatively impact some species, at the same time
as benefiting others, will improve our ability to predict future
species assemblages. One broad method for assessing ‘winning’
and ‘losing’ is by measuring species distributions, which are
already shifting in response to recent change (Chen et al., 2011).
For some species, ranges are expanding, whereas, for many oth-
ers, ranges are shifting or contracting (Parmesan, 2006). In the
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context of warming temperatures, distributional change can by
caused by direct effects on development and survival (Crozier,
2004) or by indirect effects mediated by biotic interactions
(Gutierrez & Thomas, 2001). Ectotherms, including butterflies
and other insects, are particularly sensitive to changes in the
climate and are exemplar species for the study of these issues
(Parmesan et al., 1999; Warren et al., 2001). In the present
study, we investigate the gulf fritillary butterfly (Agraulis
vanillae), which appears to be benefitting from anthropogenic
influence and has recently expanded its range in the western
U.S.A. (Shapiro & Manolis, 2007). We seek to better understand
the drivers underlying this expansion using a combination of
spatial occurrence data and long-term population records.

Agraulis vanillae is a neotropical butterfly associated with
riparian and weedy or disturbed habitats (Shapiro, 2009). Over
its entire distribution, from temperate North America to temper-
ate South America, there are eight identified sub-species. Previ-
ous work has demonstrated genetic divergence between North
American and South American lineages (Runquist et al., 2012).
In the U.S.A., A. vanillae is multi-voltine and in warmer south-
ern regions flies almost all year (Sourakov, 2008). Eastern pop-
ulations are known to undergo poleward movement each year
(Walker, 1991), with sightings as far north as North Dakota and
New York (Scott, 1986). The butterfly has a known sensitivity to
frost, which can be lethal to all life stages (Shapiro & Manolis,
2007) and may limit its permanent overwintering distribution.
This raises the possibility that the recent expansion of this but-
terfly is from the direct effect of rising temperature reducing the
risk of extinction along the northern range margins in the winter.

Agraulis vanillae utilises most plants from the genus Passi-
flora as hosts (May, 1992). The two most common species in
the U.S.A. are Passiflora incarnata and Passiflora lutea, both of
which grow naturally across much of the southeastern U.S.A.
(Gremillion, 1989). Passiflora prefers well-drained soils and is
often found in disturbed sites. In the western U.S.A., Passi-
flora is not present in natural areas and is restricted to modified
landscapes and gardens because various species have been intro-
duced to urban areas as ornamentals (Graves & Shapiro, 2003).
We are not aware of any instances where the plant has escaped
urban confines and established large self-sustaining populations.
Winter freezing temperatures likely limit the distribution of
the plant in the wild, however survival can be improved by
active management in cultivated populations (McGuire, 1999).
Agraulis vanillae was first reported in Southern California in
1875 and in San Francisco as early as 1908. It did not perma-
nently establish in San Francisco until 1955, where it used Pas-
siflora (Powell et al., 2000). In the 1960s and 1970s, the butterfly
briefly established in Sacramento but was extirpated and has
only recently reestablished in the region. The human-propagated
expansion of Passiflora in urban centres offers an alternative
biotic explanation for the expansion of the gulf fritillary.

In the present study, we utilise time series analysis and species
distribution modelling to address three specific questions. First,
using data from a long-term observational study, we investi-
gate whether climate or urban development better explain the
establishment and success of the butterfly in recent years in the
Sacramento Valley. Second, using citizen science occurrence
data and species distribution modelling, we investigate whether

the current distribution of the butterfly in the continental U.S.A.
is better explained by host plant or climate limitation and how
this varies by region. Finally, we investigate whether the butter-
fly is likely to continue to expand its distribution under different
climate change scenarios.

Materials and methods

Sacramento Valley time series data

Long-term observational data were collected every other week
by a single observer (AMS) across five sites in the Sacramento
Valley. Count data of individual butterflies at these five sites
have been collected subsequent to 1999 and presence/absence
data have been collected from the 1970s or 1980s onward,
depending on the site. Site descriptions and additional details
have been reported elsewhere (Forister et al., 2010). Agraulis
vanillae did not consistently appear at any of these five sites
until 2001 and did not appear at every site until 2012. Climate
data in California were derived from 270-m grid climate maps
of monthly and annual values for minimum and maximum
temperature and precipitation (Flint & Flint, 2012; Flint et al.,
2013; Thorne et al., 2015). We extracted the values for grid cells
that overlapped with each of the sample sites in the Sacramento
Valley and averaged the values for each monthly variable for
each year. We calculated seasonal variables by further averaging
monthly values to season and converting to water year (the start
of September through the end of August).

Sacramento Valley statistical analysis

We approached the analysis of the time series data in two
phases. First, we used annual presence/absence data to examine
colonisation, attempting to model the difference between years
in which the butterfly was absent across our focal sites and years
in which it was resident (spanning 1984 to 2018). Residency at a
site was determined to be a presence in consecutive years. Ran-
dom forest regression was used with presence at a site (during
years of residency) in a given year as the response variable and
year, percentage urban land cover (at a county level), seasonal
means of minimum temperature, seasonal means of maximum
temperature, and seasonal means of precipitation as covariates.
In total, 500 000 trees were made with a node size of 5. Variable
importance was determined by examining the increased mean
squared error of the model when each variable was randomly
permuted. The most influential variables identified by random
forest analysis were moved forward into a Bayesian hierarchi-
cal linear regression. Although the random forest is useful for
judging the potential importance of a large number of variables,
including some that are highly correlated, the Bayesian model
allows us to estimate coefficients and associated uncertainty in a
hierarchical framework (simultaneously within and across sites).
In accordance with a previous model used for data from these
study sites (Nice et al., 2019), presence was modelled both at the
individual site level and at a higher level across all sites using a
Bernoulli distribution. Vaguely informative priors were used for
means and variance, with means drawn from normal distribution
(mean = 0, SD = 10 000) and variances drawn from a gamma
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distribution (rate = 2, shape = 0.01). The Bayesian model was
comprised of four chains each run for 100 000 iterations with a
burn in phase of 50 000 iterations.

As a second phase, we examined annual population dynam-
ics post-colonisation at the same focal sites, using individual
survey count data summarised by year and transformed into
population growth rates. Population growth was calculated as
the natural log of the current year’s total count divided by the
previous year’s total count (Sibly & Hone, 2002). To determine
the most influential climate variables, population growth in a
given year was then modelled using a random forest regression.
Covariates in the model included year, urban development,
abundance in the previous year, seasonal means of minimum
monthly temperature, seasonal means of maximum monthly
temperature and seasonal means of precipitation, as well as
these same variables lagged by 1 year to allow in particular for
effects mediated through host plants. Again, 500 000 trees with
a node size of 5 were used. Variable importance was determined
by examining the increased mean squared error of the model
after permutation of each variable, and this was done both
within and among sites. Similar to the colonisation analysis, the
most influential variables identified by random forest analysis
were moved forward into a Bayesian hierarchical model in
which population growth was modelled both at the individual
site level and at a higher level across all sites using a normal
distribution. Means of covariates were drawn from a vaguely
informative normal distribution (mean = 0, SD = 10 000) and
variances were drawn from a gamma distribution (rate = 2,
shape = 0.01). This model comprised four chains each run for
100 000 iterations with a burn in phase of 50 000 iterations.
All analyses were conducted using the randomForest (Liaw &
Wiener, 2018) and jagsUI (Kellner, 2019) packages in R and r
studio (https://rstudio.com; R Development Core Team, 2013).

National data

For U.S.-wide spatial analyses, geo-referenced data points
for both A. vanillae and Passiflora were acquired from obser-
vations on iNaturalist (iNaturalist, 2019) and GBIF (GBIF.org,
2019). Additional observations of Passiflora were obtained
from Calflora (Calflora: Information on California plants for
education, research and conservation, 2014) and additional
observations of A. vanillae from the Butterflies and Moths of
North America (Lotts & Naberhaus, T coordinators, 2017) and
eButterfly (Larrivee et al, 2018) (see Supporting information,
Figs S1 and S2). Only observations made subsequent to 2000
with a spatial precision higher than 1 km were used for analysis.
Both Passiflora and A. vanillae are distinct and identification is
likely not a concern; however, a random subset of 100 observa-
tions with photos were checked and all were found to be correct
IDs. Current climate data and future projections were obtained
from WorldClim (Hijmans et al., 2005). A human population
density raster was obtained from the Socioeconomic Data and
Applications Center, which used data from the 2010 census
(Center for International Earth Science Information Network,
2018). All raster layers were cropped to include only the 48 con-
tiguous states of the U.S.A., although A. vanillae is also present
in Hawaii as an introduced species. Finally, A. vanillae points

were separated based on being from the overwintering season,
which was defined as between January and March, which is
earlier than the earliest observed spring migrant from a study of
A. vanillae seasonal movement in Florida (Walker, 1991).

National statistical analysis

Species distribution models were built for both Passiflora and
A. vanillae. All host plant models were applied to the genus
level, although Passiflora species known not to be hosts were
excluded. The western and eastern distributions were modelled
separately to allow for the possibility of different factors affect-
ing range limits in the different regions. For all models, we
used the MaxEnt algorithm, which models presence only data
by comparing observations with random background points.
For every model, 10 000 random background points were taken
within the continental U.S.A. To account for sampling bias
in the occurrence data, the random background points were
spatially structured using a bias file (Phillips et al., 2009).
For Passiflora, the bias file was built from all Malpighiales
observations (excluding Passiflora) and the bias file for A.
vanillae was built using all Nymphalidae observations (exclud-
ing A. vanillae). Passiflora was modelled using temperature,
mean precipitation and human population density as covariates.
Models were built and evaluated using minimum temperature
in the coldest month, mean annual temperature, maximum
temperature in the warmest month, and both maximum and
minimum together as temperature variables. Human population
was included in the model to account for any dependence on
urban cultivation, which we hypothesised to be important in the
western U.S.A. The best performing host plant model was later
used as a covariate for the butterfly distribution model. For A.
vanillae, both the overwintering and maximum distributions
were modelled. The overwintering distribution was modelled
using the best performing Passiflora distribution model and
temperature variables. The maximum annual distribution was
similarly modelled using the Passiflora distribution model
and temperature as covariates. As with Passiflora analyses,
various temperature variables were used for model building and
comparison, and only the highest performing model for both
overwinter and dispersal distributions were used for inference
and projection. The models were trained on 70% of the data
and tested with the remaining 30%. Model evaluation was per-
formed by examining the area under the curve (AUC) scores and
omission error rates of both the real model and 1000 permuted
null models. Methods and code for null model permutation are
described by Bohl et al. (2019), although, in brief, observations
from the real model are randomly moved around the study area
and compared with the real model using the same covariates
and testing data. All analyses were performed in R Studio using
the dismo package (Hijmans et al., 2013).

Results

Time series

For the first 25 years of the time series, A. vanillae only
appeared as an occasional visitor; however, beginning in 2001,
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Fig. 1. (a) Change in detection probability (the ratio of days observed to total visits) over time across all sites. (b) Annual ratio of urban land cover
to total land cover at a county level for the three counties containing long-term study sites: North Sacramento and Rancho Cordova are in Sacramento
County; Suisun Marsh and Gates Canyon are in Solano County. (c) Mean monthly maximum winter temperature over time.

it became a frequent visitor to all sites across the Sacramento
Valley. This rise in the presence of A. vanillae occurred during
a time of rising temperature and increasing urban development
in the area (Fig. 1). The random forest model attributed high
importance to winter maximum temperatures, percentage urban
land cover and year in predicting presence at a site (Fig. 2a).
Both maximum temperature and urban land cover were increas-
ing over time, especially land cover, which is highly correlated
with year (correlation coefficients for year and land cover range
from 0.973 in Solano county to 0.989 in Yolo county). In the
Bayesian analysis, the model successfully converged (as judged
by visual inspection of posterior probability distributions, Rhat
values and effective sample size estimates) at both the individual
site level and at the higher across site level. Only year was used
in the model because it is highly correlated with urbanisation
(precluding the inclusion of both variables). The Bayesian
model confirms that both maximum winter temperatures and
year are positively associated with colonisation at the higher
across site level and at each individual site (Fig. 3a; see also
Supporting information, Fig. S3). Specifically, the probability
that maximum temperature has a greater than zero effect is
0.98 and the probability that year has a greater than zero effect
is 0.92. There is a 0.98 probability that year has a stronger
effect than winter, thus the positive trend of colonisation is not
sufficiently explained by climate.

For annual population dynamics (represented by the natural
log of the current to previous population density), the random
forest analysis attributed high importance to abundance in the
previous year, winter minimum temperature in the current
year, winter precipitation in the current year and summer
precipitation in the current year for predicting population growth
(Fig. 2b; see also Supporting information, Figs S4 and S5).
Although urbanisation is one of the covariates in the model,
it was not found to be important for population growth rates.
Coefficients in the Bayesian model for population growth
converged at both the across site and individual site level.
Previous year’s abundance, winter minimum temperature and
winter precipitation all had negative effects on population
growth. The model is confident in the negative impacts of
previous year’s abundance, winter minimum temperature, and
winter precipitation (Fig. 3b). Specifically, the probability that
previous year’s abundance has a negative effect is 0.84, the
probability that winter minimum temperature has a negative
effect is 0.80 and the probability that winter precipitation has a
negative effect is 0.88. There does not appear to be a strong effect
of summer precipitation in the Bayesian hierarchical regression,
despite the importance attributed to it in the random forest. All
three variables have approximately equal estimated effect sizes.
At the individual site level, there is variation in estimated effects;
however, negative density dependence is observed at all sites.
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Fig. 2. (a) Variable importance of model covariates in predicting the presence of A. vanillae at a site in the Sacramento Valley over time. (b) Variable
importance of model covariates in predicting the annual population growth after establishment.

Fig. 3. 95% credible intervals for important coefficients (as determined by random forest). The y-axis shows scaled coefficient estimates. (a) Estimates
of coefficients for establishment. (b) Estimates of coefficients for population growth.

Winter climate is also important at all sites; however, some sites
have higher estimated impacts of winter precipitation, whereas
others more heavily weight winter minimum temperatures (see
Supporting information, Fig. S6).

Species distribution models

The predictors of highest importance of the geographical dis-
tribution of Passiflora vary between the eastern and western
U.S.A. In the East, Passiflora is best predicted by winter mini-
mum temperatures and precipitation, whereas, in the West, urban
population and maximum summer temperatures are the best
predictors (Table 1; see also Supporting information, Table S1).

All models achieved high AUC values and performed exception-
ally well when compared with permuted null models (Table 1;
see also Supporting information, Fig. S7). Under the Repre-
sentative Concentration Pathway (RCP) 4.5, suitable habitat in
the eastern U.S.A. is predicted to increase along the north-
ern range boundary for Passiflora. Habitat is also predicted to
become slightly less suitable along the southern range boundary;
however, the magnitude of this change in suitability is not com-
parable to the increase on the poleward margin (Figs 4 and 5).
In the western U.S.A., current areas of suitability are predicted
to expand, although not in a clear poleward direction.

The current overwintering ranges of A. vanillae in the eastern
and western U.S.A. are best explained by both host plant and
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Table 1. Variable importance and model fit of host plant distribution model.

Host plant distribution model

Region Maximum temperature Minimum temperature Population Precipitation AUC OR P-value

East 10.3 62.9 3.1 23.7 0.822 0.076 < 0.05
West 25.2 16.8 42.2 15.8 0.830 0.125 < 0.05

Rows represent different regional models and columns are the different variables in the model. The area under the curve (AUC) is the performance
metric of model fit. OR, omission rate.

Fig. 4. Current distribution of suitability for Passiflora in the West (top left), Passiflora in the East (top right), overwintering A. vanillae in the West
(middle left), overwintering A. vanillae in the East (middle right), maximum annual A. vanillae in the West (bottom left) and maximum annual A.
vanillae in the East (bottom right). [Colour figure can be viewed at wileyonlinelibrary.com].
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Fig. 5. The expanding gulf fritness landscape. Predicted change in suitability in 2050 under RCP 4.5 for Passiflora in the West (top left), Passiflora
in the East (top right), overwintering A. vanillae in the West (middle left), overwintering A. vanillae in the East (middle right), maximum annual A.
vanillae in the West (bottom left) and maximum annual A. vanillae in the East (bottom right). [Colour figure can be viewed at wileyonlinelibrary.com].

winter minimum temperatures (see Supporting information,
Table S1). Similar to the host plant model, all models performed
well in regard to AUC scores and when compared with permuted
null models (Table 2; see also Supporting information, Fig. S7).
The variable importance of minimum temperature in the East is
slightly greater, however it is not clear if these slight differences

in variable importance are meaningful (Table 2). Future climate
scenarios project a slight increase in the suitability of some areas
in the southeast for overwintering, although not a major expan-
sion (Figs 4 and 5). The models of maximum annual distribution
tell a different story. Models for maximum annual distribution
performed best using average temperature; however, greater
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Table 2. Variable importance and model fit of overwintering distribu-
tion model.

Overwintering distribution model

Region
Maximum
temperature Host plant AUC OR P-value

East 65.7 34.3 0.931 0.095 < 0.05
West 46.9 53.1 0.855 0.140 < 0.05

Rows represent different regional models and columns are the different
variables in the model. The area under the curve (AUC) is the perfor-
mance metric of model fit. OR, omission rate.

Table 3. Variable importance and model fit of maximum annual
distribution model.

Maximum annual distribution model

Region
Average
temperature Host plant AUC OR P-value

East 11.3 88.7 0.843 0.102 < 0.05
West 34.0 66.0 0.821 0.073 < 0.05

Rows represent different regional models and columns are the different
variables in the model. The area under the curve (AUC) is the perfor-
mance metric of model fit. OR, omission rate.

importance in both regions was given to host plant distribution
(Table 3). Again, models performed well using both the AUC
metric and permuted null model comparison (Table 3; see
also Supporting information, Fig. S7). This greater importance
of the host plant is reflected in the future model predictions,
which show A. vanillae expansion into areas that also predict
Passiflora expansion (Figs 4 and 5). Thus, although overwin-
tering gains appear marginal under future warming, expansion
of the range during the spring and summer is potentially
substantial. Across all models, projections under RCP 8.5
show a slightly greater expansion but do not dramatically vary
from predictions under RCP 4.5 (see Supporting information,
Fig. S8).

Discussion

Species are currently encountering novel biotic and abiotic
conditions, which can positively or negatively impact popu-
lation dynamics and geographical distributions (McKinney &
Lockwood, 1999). Building models that parse these various
stressors furthers our understanding of these impacts and allows
for better prediction of future assemblages. In the present study,
we found that years in which the butterfly had colonised our
focal sites were characterised by warmer winter maximum tem-
peratures, whereas winter minimum temperatures had a negative
impact on population growth rates in the years after colonisa-
tion. In particular, if the previous winter was cooler and drier,
the butterfly was found in higher abundance the next year. It is
possible that the negative impact of winter climate on A. vanil-
lae that we observed is mediated through interactions with host
plants or other insects. It could be the case that warmer and

wetter winters negatively impact Passiflora, although another
and perhaps more likely explanation is that wetter and warmer
winters increase parasitoid pressure and/or disease leading to
reduced adult emergence the next year (Harvell et al., 2002;
Stireman III et al., 2005). Agraulis vanillae is known to host
nucleopolyhedrovirus (Rodriguez et al., 2011), which could be
one mechanism that generated the observed negative density
dependence (see Supporting information, Fig. S4); however, this
is not known to impact California populations. Finally, at our
focal sites, there is a slight positive trend over time in winter
precipitation and winter minimum temperature (see Supporting
information, Fig. S9), suggesting that, if anything, the butterfly
is persisting and expanding in the Sacramento Valley despite cli-
mate and not because of it.

The local impact of climate on the population dynamics of
A. vanillae in the Sacramento Valley also has implications for
explaining the limiting factors of its current distribution in the
western U.S.A. Distribution models of A. vanillae in the east and
west place high importance on the distribution of the host plant;
however, only the western host plant model identified human
population density as an important predictor (after accounting
for sampling bias in the data). One explanation for the recent
colonisation of the area by the butterfly is the increasing urban-
isation of the Sacramento Valley. Over the past 20 years, the
suburbs of Sacramento have expanded at a steady rate (Forister
et al., 2010), which has likely resulted in an increase in Passi-
flora in the region. Random forest analysis ranked urban land
cover over any climate variable when predicting colonisation
and the Bayesian model found a much greater effect of year
(which is highly correlated with urbanisation). In the eastern
U.S.A., the impacts of temperature, specifically minimum tem-
peratures, are apparent in geographical distribution models. In
the east, the distribution of Passiflora extends further north in the
winter compared with A. vanillae, whereas, in the west, the over-
wintering distribution closely resembles that of Passiflora. Once
the weather warms in the east, the butterflies can then expand to
cover the distribution of the host plant. Thus, although minimum
temperature plays an important role in the overwintering loca-
tions of the eastern gulf fritillary, its maximum extent appears to
be host plant limited.

Although all analyses involve a single focal species, an inter-
esting result of the present study is the discovery that variation
in limiting factors between the east and west result in quite
different predictions for distributional change under future
climates by season and by region. In the eastern U.S., models
using the RCP 4.5 and 8.5 climate scenarios broadly follow the
expectation of poleward movement, with more suitable habitat
along the northern range margin and a slight reduction in habitat
suitability in south. In the winter the butterfly is limited by tem-
perature and predicted expansion during this time will largely
be as a result of increasing temperatures. Later in the season, the
butterfly is primarily limited by the distribution of the host plant
and this expansion would be better explained by an indirect
effect of temperature mediated the distribution of the host plant.
In the western U.S., expansion is also predicted, although not
in a single direction. This region is much more climactically
and topographically complex and this result is perhaps not sur-
prising. A recognisable pattern is the importance of population
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centres, especially in the expansion of the maximum annual
distribution of the butterfly. It is important to note that our future
projections were created using climate forecasts and not human
population forecasts. This means that there is an underlying
assumption in the projection that population density will remain
the same, which almost certainly will not be met. Given the
predictive power of population in the western U.S.A. models,
we suggest that these projections are conservative. Overall,
newly suitable areas for the butterfly closely follow the newly
suitable areas for the host plant, thus we infer that expansion in
the West is most closely tied to the indirect effect of host plant
expansion.

These findings add to the literature stressing the utility of
accounting for biotic interactions in species distribution mod-
elling and forecasting. Biotic interactions are an important factor
in shaping the distributions of species but have been incor-
porated into few studies examining climate change (Araujo
& Luoto, 2007; Heikkinen et al., 2007; Preston et al., 2008;
Schweiger et al., 2008), at least relative to abiotic-only distri-
bution models. Many of the studies that do incorporate biotic
information demonstrate that, whether the biotic element be
a host plant or a mutualist, model performance is improved.
Similarly, we show that the host plant has high predictive
importance and allows for a better understanding of the current
distributional limits of the butterfly. Another important compo-
nent of these results is the observed within-distribution varia-
tion because we show the importance of host plant varying by
season and region. Recognising and accounting for this vari-
ation is critical to better predict future responses to change,
especially for species with large spatial distributions (Murphy
& Lovett-Doust, 2007; O’Neill et al., 2008). By incorporating
both a key host plant interaction and allowing it to vary by
region, we have a more complete understanding of this observed
expansion.

The gulf fritillary is a notable example of a ‘winner’ in
the Anthropocene. Although insects are declining on a large
scale (Hallmann et al., 2017; Lister & Garcia, 2018; Salcido
et al., 2020; Sanchez-Bayo & Wyckhuys, 2019; Wepprich et al.,
2019), altered conditions create opportunities for some to pre-
vail. The nuances of each success story are different, although
it is clear that increasing temperature is playing a vital role
in facilitating the distributional expansion of many of these
insect winners. Other studies have shown that rising tempera-
ture can impact insect distributions by increasing overwinter-
ing survival along a northern range margin (Crozier, 2004), by
increasing access to food resources (Raffa et al., 2013) or by
increasing diet breadth (Pateman et al., 2012). As temperatures
continue to warm, insects will continue to be prime candidates
for temperature-driven distributional change, for better or for
worse. Continuing to observe these phenomena and developing
methods by which to understand them is critical. In the present
study, the combination of long-term time series data and
large-scale citizen science spatial data allowed for a detailed
examination of the underlying causes for such an expan-
sion. As these types of data continue to become more widely
accessible, the common themes behind insect distributional
change in the Anthropocene will continue to become more
apparent.
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